The Problem of Identification Cont SEM....

The Problem of Identification

The problem of identification means whether the structural parameters can be derived from reduced form parameters. The choice of estimation depends on the identification status of the model. The identification is used as advance strategy to check whether the structural parameters can be obtained from reduced form parameters. 

There are two possible situations.

1.      Exactly Identified

If all structural parameters can be retrieved in a unique manner from reduced form parameters, an equation is exactly identified. The reduced form parameters in this situation can be estimated using the indirect least squares (ILS) method.

2.      Un Identified

If all structural parameters cannot be uniquely determined from reduced form parameters, the equation is under identified.

Unidentified SEM can be further divide into two.

i.                    Over-identified

A model is considered to be over identified if it does not have a unique estimate for at least one structural parameter generated from reduced form parameters. Under identified.

ii.                  Under identified

A model is under identified if all structural parameters can not be derived from reduced form parameters.

The following example can be used to clarify the concepts of exactly and under identified:


qabCu→ Demand Equationq

qs abCu2Supply Equation

qq Equilibrium

In these equations:

qqs = q and P are endogenous variables while y and w are exogenous variables.

at equilibrium condition:

                                   abCu2 = abCu1  

                                    b2 P -  b1 P   a1 - a2 C1 W -  C2  u1 -  u2 

                                    (b2  b1)P   a1 - a2 C1 W -  C2  u1 -  u2 

Substitute the value of p in demand equation.

                                                           q abCu2







They are consistent estimates of structural parameters and both equations are exactly identified. The indirect least squares (ILS) method can used to estimate the reduced form parameters.

Now to understand the concept of over and under identification.

Let us consider the following simultaneous equations model.

qabCY +d1 R u→ Demand Equationq

qs abu2Supply Equation

qq Equilibrium

                                              abu2 = abCY +d1 R u

  bP  - bP a1 - a2 + CY +d1 R u1 -  u 

b  - b1) P a1 - a2 + CY +d1 R u1 -  u 

Substitute the value of p in demand model



The structural parameters (a1, b1, c1, d1) can not be determined from reduced form parameters (estimates). The demand equation is under identified.

Practice Question

Find the reduced form of the demand and supply function and show that the supply function is exactly identified.

Qααu1
Qβu2

Solution: Considering equilibrium

Qd = 
Qs = Q

αP -  β =  - α u2 -  u1

 -  β1)  =  - α u2 -  u1

The OLS method can be applied to estimate the parameter of equation – 2.

Substitute P (from equ. 1) in supply equation (or in demand equation)







No comments:

Post a Comment

Moving Average Models (MA Models) Lecture 17

  Moving Average Models  (MA Models)  Lecture 17 The autoregressive model in which the current value 'yt' of the dependent variable ...