Moving Average Models
(MA Models)
Lecture 17
The
autoregressive model in which the current value 'yt' of the dependent variable is based
solely on the past error term(s) is called MA models.
If the dependent variable "yt" is expressed as a linear combination of q-lag noise terms, the model is called MA(q). model
yt = μ + α1ϵt-1 + α2ϵt-2 + ⋯ + αqϵt-q + ϵt
yt = μ + ϵt + ∑αi ϵt-i
Where:
ϵt∼NIID(0, σ²)
If the dependent variable "yt" is expressed as a linear combination of previous noise terms, the model is called MA(1). model
yt = μ + α1ϵt-1 + ϵt
Or we can write as:
yt = μ + ϵt + α1ϵt-1
Where:
ϵt∼NIID(0, σ²)
ACF
& PACF MA (1) Model
Consider MA (1) model
yt = μ + ϵt + θϵt-1
E (yt) = E (μ + ϵt + θϵt-1)
E (yt) = E (μ) + E (ϵt) + θE(ϵt-1)
We know that
E (ϵt) = 0
E (yt) = μ
The covariance of MA (1) model
Cov (yt,yt-1) = E[{yt-E(yt)} {yt-1- E(yt-1)}]
Cov (yt, yt-1) = E [{yt- μ} {yt-1- μ}]
Cov (yt, yt-1) = E [{μ + ϵt + θϵt-1 - μ} {μ + ϵt-1 + θϵt-2 - μ}]
Cov (yt, yt-1) = E [{ϵt + θϵt-1} {ϵt-1 + θϵt-2}]
Cov (yt, yt-1) = E [ϵt ϵt-1 + θϵt-1 θϵt-2 + θ (ϵt-1)^2]
Cov (yt, yt-1) = E (ϵt ϵt-1) + θ^2 E(ϵt-1 ϵt-2) + θ E(ϵt-1)^2]
Cov (yt, yt-1) = θ E(ϵt-1)^2
Cov (yt, yt-1) = θ σ²
Hence, the covariance of yt and yt-1 are not independent.
The variance of MA (1) model
Var(yt) = E[yt-E(yt)] ²
Var(yt) = E[yt-μ] ²
Var(yt) = E[μ + ϵt + θϵt-1-μ] ²
Var(yt) = E[ϵt + θϵt-1] ²
Var(yt) = E[(ϵt)² + (θ)² (ϵt)²]
Var(yt) = E(ϵt) ² + (θ)² E(ϵt)²
Var(yt) = σ² + θ² σ²
Var(yt) = (1+ θ²) σ²
The yt-1 variance
Var(yt-1) = E[yt-1-E(yt-1)] ²
Var(yt-1) = E[yt-1-μ] ²
Var(yt-1) = E[μ + ϵt-1 + θϵt-2-μ] ²
Var(yt-1) = E[ϵt-1 + θϵt-2] ²
Var(yt-1) = E[(ϵt-1)² + (θ)² (ϵt-2)²]
Var(yt-1) = E(ϵt-1) ² + (θ)² E(ϵt-2)²
Var(yt-1) = σ² + θ² σ²
Var(yt-1) = (1+ θ²) σ²
Hence, the var(yt) = var(yt-1).
The auto-correlation of order 1 (ACF1)
The PACF of order 1 is equal to the ACF. Thus,
Example: Find the ACF
and PACF of the MA (1) model given below:
yt = 10 + ϵt + 0.70 ϵt-1
Where:
E(ϵt) = 0
Solution: The ACF of MA (1) is given by:
ρ1 = θ^2 / 1+θ^2
ρ1 = (0.70)^2 / 1+(0.70)^2
ρ1 = 0.67
PACF = 0.67
Auto-correlation using MA (2) Model
Consider MA (2) model
yt = μ + ϵt + θ1ϵt-1 + θ2ϵt-2
where:
ϵt is NIID(0, σ²) and E(yt) = μ
Cov(yt, yt-1) = E[{yt - E(yt)} {yt-1 - E(yt-1)}]
Cov(yt, yt-1) = E [{yt - μ} {yt-1 - μ}]
Cov(yt, yt-1) = E [{μ + ϵt + θ1ϵt-1 + θ2ϵt-2 - μ} {μ + ϵt-1 + θ1ϵt-2 + θ2ϵt-3 - μ}]
Cov(yt, yt-1) = E [{ϵt + θ1ϵt-1 + θ2ϵt-2} {ϵt-1 + θ1ϵt-2 + θ2ϵt-3}]
Cov(yt, yt-1) = E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3) + θ1ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3) + θ2ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)]
Cov(yt, yt-1) = E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] + θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] + θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] ...(1)
Now
E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = E [ϵt ϵt-1 + θ1ϵt ϵt-2 + θ2ϵt ϵt-3]
E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = E [ϵt ϵt-1) + θ1 E (ϵt ϵt-2) + θ2 E(ϵt ϵt-3)
E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = 0 ...(a)
θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ1 E [(ϵt-1)(ϵt-1) + θ1ϵt-1ϵt-2 + θ2ϵt-1ϵt-3)]
θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ1 E (ϵt-1)² + θ1 E(ϵt-1ϵt-2) + θ2 E(ϵt-1ϵt-3)
θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ1 σ² ...(b)
θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ2 E [(ϵt-1ϵt-2 + θ1(ϵt-2)² + θ2ϵt-2ϵt-3)]
θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ₂ E (ϵt-1ϵt-2 + θ₁θ₂ E (ϵt-2)² + θ₂θ₂ Eϵt-2ϵt-3)
θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ₁θ₂ E (ϵt-2) ²
θ₂ E [ϵt-2(ϵt-1 + θ₁ϵt-2 + θ₂ϵt-3)] = θ₁θ₂ σ² ... (c)
Substitute in equation 1 from a, b, and c.
Cov(yt, yt-1) = θ₁ σ² + θ₁θ₂ σ²
Cov(yt, yt-1) = θ₁ (1 + θ₂) σ²
The variance of yt
Var (yt) = E(yt - E(yt)) ²
Var (yt) = E(yt - μ) ²
Var (yt) = E(μ + ϵt + θ1ϵt-1 + θ2ϵt-2 - μ)²
Var (yt) = E(ϵt + θ1ϵt-1 + θ2ϵt-2)²
Var (yt) = E(ϵt) ² +(θ1) ²E((ϵt-1) ²+(θ2) ²E((ϵt-2) ²
Var (yt) = σ² +(θ1)σ² +(θ2)²σ²
Var (yt) = (1 +(θ1) +(θ2)²)σ²
Example: Find the ACF
of the MA (2) model is given by
yt = 10 + ϵt + 0.5ϵt-1 + 0.3ϵt-2
Solution: The ACF of MA
(2) is given by:
Estimation
of parameters in MA (1) model
The MLE method can be employed to estimate the parameters of the MA (1) model.
Consider
MA (1) model
yt = μ + ϵt + θϵt-1
E (yt) = E (μ + ϵt + θϵt-1)
E (yt) = E (μ) + E (ϵt) + θE(ϵt-1)
E (yt) = μ
The pdf of
follow normal distribution given below:
No comments:
Post a Comment