ACF
& PACF of AR (2) Model
Lecture 16
Consider an AR(2) model.
We use Yule-Walker equations
Multiply the AR (2) by its immediate lag yt-1, and take expectations and divide by the variance of yt.
ρ1-ρ1β2
As
Example: Consider the AR (2) model
yt = 0.75 yt-1 - 0.25 yt-2 + ut
Find the first- and second-order ACFs.
Solution: From the model
ACF
& PACF of AR (p) model
Consider the AR(p) model
Using the Yule–Walker equation
Using Cramer's rule to obtain the estimates of β's.
The first, second order
of ACF
For third-order PACF
Example
Find the ACF and PACF using SPSS.
|
Month – year |
Covid-19Cases (per million) |
||||||||||||||||||||||||||||||||||||||||||||
|
|
Solution:
The ACF and PACF of Covid 19 spread from March, 2020 to
December 2021.
|
Autocorrelations |
|||||
|
Series: VAR00001 |
|||||
|
Lag |
Autocorrelation |
Std. Errora |
Box-Ljung Statistic |
||
|
Value |
df |
Sig.b |
|||
|
1 |
.871 |
.203 |
18.329 |
1 |
.000 |
|
2 |
.721 |
.198 |
31.541 |
2 |
.000 |
|
3 |
.566 |
.193 |
40.139 |
3 |
.000 |
|
4 |
.432 |
.188 |
45.442 |
4 |
.000 |
|
5 |
.313 |
.182 |
48.402 |
5 |
.000 |
|
6 |
.191 |
.176 |
49.580 |
6 |
.000 |
|
7 |
.064 |
.170 |
49.720 |
7 |
.000 |
|
8 |
-.055 |
.164 |
49.833 |
8 |
.000 |
|
9 |
-.147 |
.158 |
50.704 |
9 |
.000 |
|
10 |
-.222 |
.151 |
52.870 |
10 |
.000 |
|
11 |
-.292 |
.144 |
57.000 |
11 |
.000 |
|
12 |
-.354 |
.137 |
63.733 |
12 |
.000 |
|
13 |
-.392 |
.129 |
73.033 |
13 |
.000 |
|
14 |
-.400 |
.120 |
84.075 |
14 |
.000 |
|
15 |
-.395 |
.111 |
96.659 |
15 |
.000 |
|
16 |
-.387 |
.102 |
111.145 |
16 |
.000 |
|
Partial Autocorrelations |
||
|
Series: VAR00001 |
||
|
Lag |
Partial Autocorrelation |
Std. Error |
|
1 |
.871 |
.218 |
|
2 |
-.158 |
.218 |
|
3 |
-.100 |
.218 |
|
4 |
-.007 |
.218 |
|
5 |
-.042 |
.218 |
|
6 |
-.117 |
.218 |
|
7 |
-.122 |
.218 |
|
8 |
-.070 |
.218 |
|
9 |
-.012 |
.218 |
|
10 |
-.065 |
.218 |
|
11 |
-.107 |
.218 |
|
12 |
-.072 |
.218 |
|
13 |
-.010 |
.218 |
|
14 |
.008 |
.218 |
|
15 |
-.065 |
.218 |
|
16 |
-.071 |
.218 |
- Read More: MA Models















No comments:
Post a Comment