ACF & PACF of AR (2) Model Lecture 16

 

ACF & PACF of AR (2) Model

Lecture 16

Consider an AR(2) model.

yt β0 + β1 yt-1 + β2 yt-2 + ϵt

ignoring intercept

yt = β1 yt-1 + β2 yt-2 + ϵt

We use Yule-Walker equations

 Multiply the AR (2) by its immediate lag yt-1, and take expectations and divide by the variance of yt.

yt x yt-1 = β1 yt-1 x yt-1 + β2 yt-2 x yt-1 + ϵt x yt-1

E (yt x yt-1) = β1E (yt-1 x yt-1) + β2 E (yt-2 x yt-1) + E (ϵt x yt-1)

Cov (yt , yt-1) = β1Var (yt-1) + β2 Cov (yt-2, yt-1) 

Now divide by the variance of yt

Cov (yt , yt-1)/ Var(yt) = β1Var (yt-1) / Var(yt) + β2 Cov (yt-2 x yt-1) / Var(yt)

 ρ1 = β1 + ρ1β2

ρ1-ρ1β2 β

ρ1(1- β2) β

ρ1 β1/(1- β2) 

Now AR(2) model is multiplied by yt-2 and their expectation is taken.

yt x yt-2 = β1 yt-1 x yt-2 + β2 yt-2 x yt-2 + ϵt x yt-2

E (yt x yt-2= β1E (yt-1 x yt-2) + β2 E (yt-2 x yt-2) + E (ϵt x yt-2)

Cov (ytyt-2= β1Cov (yt-1, yt-2) + β2 Var (yt-2) 

Now divide by the variance of yt

Cov (ytyt-2) / Var(yt) = β1 Cov (yt-1, yt-2) / Var(yt) + β2 Var(yt-2) / Var(yt)

We know that Var(yt) = Var(yt-2)

Cov (ytyt-2) / Var(yt) = β1 Cov (yt-1, yt-2) / Var(yt) + β2 

ρ₂ = ρ₁β₁ + β₂

As ρ1 β1/(1- β2) 

ρ₂ = β₁β₁/(1-β₂) + β₂


Example: Consider the AR (2) model

yt = 0.75 yt-1 - 0.25 yt-2 + ut

Find the first- and second-order ACFs.

Solution: From the model

β₁ = 0.75,  β₂ =  -0.25

ρ1 β1/(1- β2) 

ρ1 = 0.75/(1+ 0.25) 

ρ1 = 0.75/1.25

 ρ1 = 0.60


ACF & PACF of AR (p) model

Consider the AR(p) model

yt = β1 yt-1 + β2 yt-2 β3 yt-3 + ... + βp yt-p + ϵt

Using the Yule–Walker equation

The AR(p) model is multiplied by yt-j, take the expectation and divided by Var(yt).
yt = β1 yt-1 + β2 yt-2 β3 yt-3 + ... + βp yt-p + ϵt

yt x yt-j = β1 yt-1 x yt-j + β2 yt-2 x yt-j β3 yt-3 x yt-j + ... + βp yt-p x yt-j + ϵt x yt-j

E (yt x yt-j) = β1 E (yt-1 x yt-j) + β2 E (yt-2 x yt-j) + β3 E (yt-3 x yt-j) + ... + βp E (yt-p x yt-j) + E (ϵt x yt-j)

Cov(yt, yt-j) = β1 Cov(yt-1, yt-j) + β2 Cov (yt-2, yt-j)   β3 Cov(yt-3, yt-j) + ... + βp Cov(yt-p, yt-j) 


j = 1, 2, 3, ...



Using Cramer's rule to obtain the estimates of β's.

The first, second order of ACF

For third-order PACF



Example

Find the ACF and PACF using SPSS. 

Month – year

Covid-19Cases

 (per million)

Mar-20

Apr-20

May-20

Jun-20

Jul-20

Aug-20

Sep-20

Oct-20

Nov-20

Dec-20

Jan-21

Feb-21

Mar-21

Apr-21

May-21

Jun-21

Jul-21

Aug-21

Sep-21

Oct-21

Nov-21

Dec-21

0.001938

0.015525

0.069496

0.209337

0.278305

0.295636

0.312263

0.332993

0.398026

0.479775

0.544813

0.579973

0.667957

0.820823

0.918936

0.957371

1.029811

1.160119

1.245127

1.272345

1.28484

1.292728

Solution:

The ACF and PACF of Covid 19 spread from March, 2020 to December 2021.

Autocorrelations

Series: VAR00001

Lag

Autocorrelation

Std. Errora

Box-Ljung Statistic

Value

df

Sig.b

1

.871

.203

18.329

1

.000

2

.721

.198

31.541

2

.000

3

.566

.193

40.139

3

.000

4

.432

.188

45.442

4

.000

5

.313

.182

48.402

5

.000

6

.191

.176

49.580

6

.000

7

.064

.170

49.720

7

.000

8

-.055

.164

49.833

8

.000

9

-.147

.158

50.704

9

.000

10

-.222

.151

52.870

10

.000

11

-.292

.144

57.000

11

.000

12

-.354

.137

63.733

12

.000

13

-.392

.129

73.033

13

.000

14

-.400

.120

84.075

14

.000

15

-.395

.111

96.659

15

.000

16

-.387

.102

111.145

16

.000

 

Partial Autocorrelations

Series: VAR00001

Lag

Partial Autocorrelation

Std. Error

1

.871

.218

2

-.158

.218

3

-.100

.218

4

-.007

.218

5

-.042

.218

6

-.117

.218

7

-.122

.218

8

-.070

.218

9

-.012

.218

10

-.065

.218

11

-.107

.218

12

-.072

.218

13

-.010

.218

14

.008

.218

15

-.065

.218

16

-.071

.218




No comments:

Post a Comment

Moving Average Models (MA Models) Lecture 17

  Moving Average Models  (MA Models)  Lecture 17 The autoregressive model in which the current value 'yt' of the dependent variable ...