Simultaneous Equations cont.....

Structural & Reduced Form Models

Structural Model

A structural model is a complete set of equations that explains how both endogenous and exogenous variables interact structurally in a system. The parameters associated with the model is known as structural parameters. The structural parameters are represented by Latin letters, i.e., α, β, γ, ...

Consider the following SEM:


Y1  =  α1  X1  +  α2  Y2  +  ϵ1
Y2  =  β1  Y1  +  β2  X2  +  ϵ2

The table of structural parameters can be obtained as: consider the above SEM model.

Transformed the observed variables to the left-hand side as:


Y1  -   α1  X1  -   α2  Y2  =  ϵ1
Y2  -  β1  Y1  -  β2  X2  =  ϵ2

Where:

α1, α2, β1 and β2 are the structural parameters.

e.g. Keynesian income determination model;

CββYut

YCIt

Transformed the observed variables to the left-hand side as:


Ct - β0 - βYt = ut

Yt - Ct - It
The table of structural parameters can be obtained as: consider the above SEM model.

Reduced Form Models

An equation in which the endogenous variables are expressed as functions of the endogenous variables is known as a reduced form model of a structural model. The reduced form parameters are represented by πij and OLS method is used to estimate these parameters.

 Let us we taken the following structural model



YααXαYu1
YββYu2

In this model (Y1,Y2 ) are endogenous variables and (X1) is exogenous variable.

Now to transform the endogenous variables is a function of exogenous variable. Substitute Y2 (from equation 2) into equation 1.

                                                    YααXαYu1

                                        YααXα2 (ββYu2 ) u1

                                      YααX(αβ+α βY+α u2 ) u1

                                      Y1- α βY1  α0 +αβ αX u(α u2 )

                                    (1α β1 )Y1  α0 +αβ αX(α u2  u)

Substitute Y1 (from eq 1) in equation (2) as:

YββYu2

Yββ1 (ααXαYu1) u2

Yβ αβ1 αβ1 Xαβ1  Yβ1 uu2

Y2 - αβ1  Yβ αβ1 αβ1 X β1 uu2

(1- αβ1Yβ αβ1 αβ1 X + (β1 uu2)

From equation – A and equation – B, it is clear endogenous variables as a function of exogenous variable that’s translated in to a single equation model. Now the OLS method to apply and estimate the parameters of A and B.

Checking

Now apply OLS method on model (A) to find the estimates π10 of  and π11 as:

Practice Question – 1:

Convert the following structural model into reduced form model.

Qααu

Qβu2

Solution: Consider at equilibrium

QQs

In the model, Q and P are endogenous variables and Income “I” is exogenous variable. The two equilibrium values, for P and Q determine at the same time.

ααu1 = βu2

αP -  βP = - αI - uu2

1 -  β1) P = - αI  u- u1
The reduced form of the above structural model:

π11 ν→ 2

The OLS method can be applied to estimate the parameter of equation – 2.

Substitute P (from equ. 1) in supply equation (or in demand equation)

Qβu2

Qβu2



Practice Question – 2:

Find the reduced form of the following structural model.

Qααα2 Y uDemand Equ.

QβββuSupply Equ.

Qd=Qsat equilibrium

Solution: The Qd=Qs = Q. The endogenous variables are Qd, Qs, and P.

P is endogenous variable because in some cases demand influences the price.

QQs

ααα2 Y u1 =  βββu2

 αP - β =  β0 - α βR  - α2 Yu2 -  u1

(α - β1) =  β0 - α βR  - α2 Yu2 -  u1

π10 π11 π12 v1

Now substitute the value of P in supply equation.

Q βββu2



π2π21 π2v2

Now we can use OLS method to find the estimates of the above reduced form model parameters.

Practice Question – 3:

Identify the exogenous and endogenous variables in the following model and also find the reduced form of the model.


CaaYu1

IbbYbYt-u2

YCIGt

Solution:The endogenous variables are CtI and  Yand the exogenous variables are Yt-1, Gt


CaaYu

IbbYbYt-u2

YCIG3

Substitute the value of  Ct(from eq. 1) and I (from eq.2) in equation (3)

                                                                YCIGt

                                      Y= (
aaYu1) + (bbYbYt-u2)Gt

                                Yt - aYt - bYt = ab0  bYt-1 + Gt + u1 u2 

                               (1 - a1 - b1 )Yt ab0  bYt-1 + Gt + u1 u2 

Now to obtain the reduced form of equation – 1. Substitute the value of Y in equation – 1.

                                                    CaaYu


Now to obtain the reduced form of equation – 1. Substitute the value of Y in equation – 2.


The OLS method can be applied to estimate the parameters of the above reduced form equations.






No comments:

Post a Comment

Moving Average Models (MA Models) Lecture 17

  Moving Average Models  (MA Models)  Lecture 17 The autoregressive model in which the current value 'yt' of the dependent variable ...