Moving Average Models (MA Models) Lecture 17

 Moving Average Models 

(MA Models) 

Lecture 17

The autoregressive model in which the current value 'yt' of the dependent variable is based solely on the past error term(s) is called MA models. 

If the dependent variable "yt" is expressed as a linear combination of q-lag noise terms, the model is called MA(q). model

yt = μ + α1ϵt-1 + α2ϵt-2 +  + αqϵt-q + ϵt

yt = μ + ϵt + αi ϵt-i

Where:

ϵtNIID(0, σ²)

If the dependent variable "yt" is expressed as a linear combination of previous noise terms, the model is called MA(1). model

yt = μ + α1ϵt-1 + ϵt

Or we can write as:

yt = μ + ϵt + α1ϵt-1 

Where:

ϵtNIID(0, σ²)

ACF & PACF MA (1) Model

Consider MA (1) model

yt = μ + ϵt + θϵt-1 

E (yt) = E (μ + ϵt + θϵt-1)
E (yt) = E (μ) + E (ϵt) + θE(ϵt-1)
We know that
 E (ϵt) = 0
E (yt) = μ

The covariance of MA (1) model

Cov (yt,yt-1) = E[{yt-E(yt)} {yt-1- E(yt-1)}]
Cov (yt, yt-1) = E [{yt- μ{yt-1-  μ}]
 
Cov (yt, yt-1) = E [{μ + ϵt + θϵt-1 - μ{μ + ϵt-1 + θϵt-2 - μ}]
Cov (yt, yt-1) = E [{ϵt + θϵt-1{ϵt-1 + θϵt-2}]
Cov (yt, yt-1) = E [ϵt ϵt-1 + θϵt-1 θϵt-2 + θ (ϵt-1)^2]
Cov (yt, yt-1) = E (ϵt ϵt-1) + θ^2 E(ϵt-1 ϵt-2) + θ E(ϵt-1)^2]
Cov (yt, yt-1) = θ E(ϵt-1)^2
Cov (yt, yt-1) = θ σ²
Hence, the covariance of yt and yt-1 are not independent.
The variance of MA (1) model
Var(yt) = E[yt-E(yt)] ²
Var(yt) = E[yt-μ] ²
Var(yt) = E[μ + ϵt + θϵt-1-μ] ²
Var(yt) = E[ϵt + θϵt-1²
Var(yt) = E[(ϵt)² + (θ)² (ϵt)²]
Var(yt) = E(ϵt) ² + (θ)² E(ϵt)²
Var(yt) = σ² + θ² σ²
Var(yt) =  (1+ θ²) σ²
The yt-1 variance
Var(yt-1) = E[yt-1-E(yt-1)] ²
Var(yt-1) = E[yt-1-μ] ²
Var(yt-1) = E[μ + ϵt-1 + θϵt-2-μ] ²
Var(yt-1) = E[ϵt-1 + θϵt-2²
Var(yt-1) = E[(ϵt-1)² + (θ)² (ϵt-2)²]
Var(yt-1) = E(ϵt-1) ² + (θ)² E(ϵt-2)²
Var(yt-1) = σ² + θ² σ²
Var(yt-1) =  (1+ θ²) σ²
Hence, the var(yt) = var(yt-1).

The auto-correlation of order 1 (ACF1)

 

The PACF of order 1 is equal to the ACF. Thus,

Example: Find the ACF and PACF of the MA (1) model given below:

 yt = 10 + ϵt + 0.70 ϵt-1 

Where:
E(ϵt) = 0

Solution: The ACF of MA (1) is given by:

ρ1 = θ^2 / 1+θ^2

ρ1 = (0.70)^2 / 1+(0.70)^2

ρ1 = 0.67

PACF = 0.67

Auto-correlation using MA (2) Model

Consider MA (2) model

yt = μ + ϵt + θ1ϵt-1 + θ2ϵt-2

where:

ϵt is NIID(0, σ²) and E(yt) = μ

Cov(yt, yt-1) = E[{yt - E(yt)} {yt-1 - E(yt-1)}]

Cov(yt, yt-1) = E [{yt - μ} {yt-1 - μ}]

Cov(yt, yt-1) = E [{μ + ϵt + θ1ϵt-1 + θ2ϵt-2 - μ} {μ + ϵt-1 + θ1ϵt-2 + θ2ϵt-3 - μ}]

Cov(yt, yt-1) = E [{ϵt + θ1ϵt-1 + θ2ϵt-2} {ϵt-1 + θ1ϵt-2 + θ2ϵt-3}]

Cov(yt, yt-1) = E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3) + θ1ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3) + θ2ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] 

Cov(yt, yt-1) = E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] + θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] + θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] ...(1)

Now

E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = E [ϵt ϵt-1 + θ1ϵt ϵt-2 + θ2ϵt ϵt-3]

E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = E [ϵt ϵt-1) + θ1 E (ϵt ϵt-2) + θ2 E(ϵt ϵt-3)
E [ϵt(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = 0 ...(a)

θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ1 E [(ϵt-1)(ϵt-1) + θ1ϵt-1ϵt-2 + θ2ϵt-1ϵt-3)] 

θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ1 E (ϵt-1)² + θ1 E(ϵt-1ϵt-2) + θ2 E(ϵt-1ϵt-3) 
θ1 E [ϵt-1(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θσ² ...(b)

θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ2 E [(ϵt-1ϵt-2 + θ1(ϵt-2)² + θ2ϵt-2ϵt-3)]
θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] = θ₂ E (ϵt-1ϵt-2 + θ₁θ₂ E (ϵt-2)² + θ₂θ₂ Eϵt-2ϵt-3)
θ2 E [ϵt-2(ϵt-1 + θ1ϵt-2 + θ2ϵt-3)] =  θ₁θ₂ E (ϵt-2) ²
θ₂ E [ϵt-2(ϵt-1 + θ₁ϵt-2 + θ₂ϵt-3)] = θ₁θ₂ σ² ... (c)
Substitute in equation 1 from a, b, and c.

Cov(yt, yt-1) = θ₁ σ² + θ₁θ₂ σ²
Cov(yt, yt-1) = θ₁ (1 + θ₂) σ²
The variance of yt
Var (yt) = E(yt - E(yt)) ²
Var (yt) = E(yt - μ) ²
Var (yt) = E(μ + ϵt + θ1ϵt-1 + θ2ϵt-2 - μ)²
Var (yt) = E(ϵt + θ1ϵt-1 + θ2ϵt-2
Var (yt) = E(ϵt) ² +(θ1) ²E((ϵt-1) ²+(θ2) ²E((ϵt-2) ²
Var (yt) = σ² +(θ1)σ² +(θ2)²σ²
Var (yt) = (1 +(θ1) +(θ2)²)σ²

Example: Find the ACF of the MA (2) model is given by

yt = 10 + ϵt + 0.5ϵt-1 + 0.3ϵt-2

Solution: The ACF of MA (2) is given by:

Estimation of parameters in MA (1) model

The MLE method can be employed to estimate the parameters of the MA (1) model.

 Consider MA (1) model

yt = μ + ϵt + θϵt-1 

E (yt) = E (μ + ϵt + θϵt-1)
E (yt) = E (μ) + E (ϵt) + θE(ϵt-1)


where:

ϵt is NIID(0, σ²)

E (yt) = μ

The pdf of follow normal distribution given below:



ACF & PACF of AR (2) Model Lecture 16

 

ACF & PACF of AR (2) Model

Lecture 16

Consider an AR(2) model.

yt β0 + β1 yt-1 + β2 yt-2 + ϵt

ignoring intercept

yt = β1 yt-1 + β2 yt-2 + ϵt

We use Yule-Walker equations

 Multiply the AR (2) by its immediate lag yt-1, and take expectations and divide by the variance of yt.

yt x yt-1 = β1 yt-1 x yt-1 + β2 yt-2 x yt-1 + ϵt x yt-1

E (yt x yt-1) = β1E (yt-1 x yt-1) + β2 E (yt-2 x yt-1) + E (ϵt x yt-1)

Cov (yt , yt-1) = β1Var (yt-1) + β2 Cov (yt-2, yt-1) 

Now divide by the variance of yt

Cov (yt , yt-1)/ Var(yt) = β1Var (yt-1) / Var(yt) + β2 Cov (yt-2 x yt-1) / Var(yt)

 ρ1 = β1 + ρ1β2

ρ1-ρ1β2 β

ρ1(1- β2) β

ρ1 β1/(1- β2) 

Now AR(2) model is multiplied by yt-2 and their expectation is taken.

yt x yt-2 = β1 yt-1 x yt-2 + β2 yt-2 x yt-2 + ϵt x yt-2

E (yt x yt-2= β1E (yt-1 x yt-2) + β2 E (yt-2 x yt-2) + E (ϵt x yt-2)

Cov (ytyt-2= β1Cov (yt-1, yt-2) + β2 Var (yt-2) 

Now divide by the variance of yt

Cov (ytyt-2) / Var(yt) = β1 Cov (yt-1, yt-2) / Var(yt) + β2 Var(yt-2) / Var(yt)

We know that Var(yt) = Var(yt-2)

Cov (ytyt-2) / Var(yt) = β1 Cov (yt-1, yt-2) / Var(yt) + β2 

ρ₂ = ρ₁β₁ + β₂

As ρ1 β1/(1- β2) 

ρ₂ = β₁β₁/(1-β₂) + β₂


Example: Consider the AR (2) model

yt = 0.75 yt-1 - 0.25 yt-2 + ut

Find the first- and second-order ACFs.

Solution: From the model

β₁ = 0.75,  β₂ =  -0.25

ρ1 β1/(1- β2) 

ρ1 = 0.75/(1+ 0.25) 

ρ1 = 0.75/1.25

 ρ1 = 0.60


ACF & PACF of AR (p) model

Consider the AR(p) model

yt = β1 yt-1 + β2 yt-2 β3 yt-3 + ... + βp yt-p + ϵt

Using the Yule–Walker equation

The AR(p) model is multiplied by yt-j, take the expectation and divided by Var(yt).
yt = β1 yt-1 + β2 yt-2 β3 yt-3 + ... + βp yt-p + ϵt

yt x yt-j = β1 yt-1 x yt-j + β2 yt-2 x yt-j β3 yt-3 x yt-j + ... + βp yt-p x yt-j + ϵt x yt-j

E (yt x yt-j) = β1 E (yt-1 x yt-j) + β2 E (yt-2 x yt-j) + β3 E (yt-3 x yt-j) + ... + βp E (yt-p x yt-j) + E (ϵt x yt-j)

Cov(yt, yt-j) = β1 Cov(yt-1, yt-j) + β2 Cov (yt-2, yt-j)   β3 Cov(yt-3, yt-j) + ... + βp Cov(yt-p, yt-j) 


j = 1, 2, 3, ...



Using Cramer's rule to obtain the estimates of β's.

The first, second order of ACF

For third-order PACF



Example

Find the ACF and PACF using SPSS. 

Month – year

Covid-19Cases

 (per million)

Mar-20

Apr-20

May-20

Jun-20

Jul-20

Aug-20

Sep-20

Oct-20

Nov-20

Dec-20

Jan-21

Feb-21

Mar-21

Apr-21

May-21

Jun-21

Jul-21

Aug-21

Sep-21

Oct-21

Nov-21

Dec-21

0.001938

0.015525

0.069496

0.209337

0.278305

0.295636

0.312263

0.332993

0.398026

0.479775

0.544813

0.579973

0.667957

0.820823

0.918936

0.957371

1.029811

1.160119

1.245127

1.272345

1.28484

1.292728

Solution:

The ACF and PACF of Covid 19 spread from March, 2020 to December 2021.

Autocorrelations

Series: VAR00001

Lag

Autocorrelation

Std. Errora

Box-Ljung Statistic

Value

df

Sig.b

1

.871

.203

18.329

1

.000

2

.721

.198

31.541

2

.000

3

.566

.193

40.139

3

.000

4

.432

.188

45.442

4

.000

5

.313

.182

48.402

5

.000

6

.191

.176

49.580

6

.000

7

.064

.170

49.720

7

.000

8

-.055

.164

49.833

8

.000

9

-.147

.158

50.704

9

.000

10

-.222

.151

52.870

10

.000

11

-.292

.144

57.000

11

.000

12

-.354

.137

63.733

12

.000

13

-.392

.129

73.033

13

.000

14

-.400

.120

84.075

14

.000

15

-.395

.111

96.659

15

.000

16

-.387

.102

111.145

16

.000

 

Partial Autocorrelations

Series: VAR00001

Lag

Partial Autocorrelation

Std. Error

1

.871

.218

2

-.158

.218

3

-.100

.218

4

-.007

.218

5

-.042

.218

6

-.117

.218

7

-.122

.218

8

-.070

.218

9

-.012

.218

10

-.065

.218

11

-.107

.218

12

-.072

.218

13

-.010

.218

14

.008

.218

15

-.065

.218

16

-.071

.218




Moving Average Models (MA Models) Lecture 17

  Moving Average Models  (MA Models)  Lecture 17 The autoregressive model in which the current value 'yt' of the dependent variable ...