ACF
& PACF of AR (2) Model
Lecture 16
Consider an AR(2) model.
yt = β0 + β1 yt-1 + β2 yt-2 + ϵt
ignoring intercept
yt = β1 yt-1 + β2 yt-2 + ϵt
We use Yule-Walker equations
Multiply the AR (2) by its immediate lag yt-1, and take expectations and divide by the variance of yt.
yt x yt-1 = β1 yt-1 x yt-1 + β2 yt-2 x yt-1 + ϵt x yt-1
E (yt x yt-1) = β1E (yt-1 x yt-1) + β2 E (yt-2 x yt-1) + E (ϵt x yt-1)
Cov (yt , yt-1) = β1Var (yt-1) + β2 Cov (yt-2, yt-1)
Now divide by the variance of yt
Cov (yt , yt-1)/ Var(yt) = β1Var (yt-1) / Var(yt) + β2 Cov (yt-2 x yt-1) / Var(yt)
β1 + ρ1β2
ρ1-ρ1β2 β1
ρ1(1- β2) β1
ρ1 β1/(1- β2)
Now AR(2) model is multiplied by yt-2 and their expectation is taken.
yt x yt-2 = β1 yt-1 x yt-2 + β2 yt-2 x yt-2 + ϵt x yt-2
E (yt x yt-2) = β1E (yt-1 x yt-2) + β2 E (yt-2 x yt-2) + E (ϵt x yt-2)
Cov (yt, yt-2) = β1Cov (yt-1, yt-2) + β2 Var (yt-2)
Now divide by the variance of yt
Cov (yt, yt-2) / Var(yt) = β1 Cov (yt-1, yt-2) / Var(yt) + β2 Var(yt-2) / Var(yt)
We know that Var(yt) = Var(yt-2)
Cov (yt, yt-2) / Var(yt) = β1 Cov (yt-1, yt-2) / Var(yt) + β2
ρ₂ = ρ₁β₁ + β₂
As ρ1 β1/(1- β2)
ρ₂ = β₁β₁/(1-β₂) + β₂
Example: Consider the AR (2) model
yt = 0.75 yt-1 - 0.25 yt-2 + ut
Find the first- and second-order ACFs.
Solution: From the model
β₁ = 0.75, β₂ = -0.25
ρ1 β1/(1- β2)
ρ1 /(1+ 0.25)
ρ1 /1.25
ρ1
ACF
& PACF of AR (p) model
Consider the AR(p) model
yt = β1 yt-1 + β2 yt-2 + β3 yt-3 + ... + βp yt-p + ϵt
Using the Yule–Walker equation
The AR(p) model is multiplied by yt-j, take the expectation and divided by Var(yt).
yt = β1 yt-1 + β2 yt-2 + β3 yt-3 + ... + βp yt-p + ϵt
yt x yt-j = β1 yt-1 x yt-j + β2 yt-2 x yt-j + β3 yt-3 x yt-j + ... + βp yt-p x yt-j + ϵt x yt-j
E (yt x yt-j) = β1 E (yt-1 x yt-j) + β2 E (yt-2 x yt-j) + β3 E (yt-3 x yt-j) + ... + βp E (yt-p x yt-j) + E (ϵt x yt-j)
Cov(yt, yt-j) = β1 Cov(yt-1, yt-j) + β2 Cov (yt-2, yt-j) β3 Cov(yt-3, yt-j) + ... + βp Cov(yt-p, yt-j)
Using Cramer's rule to
obtain the estimates of β's.
The first, second order
of ACF
For third-order PACF
Example
Find the ACF and PACF using SPSS.
|
Month – year
|
Covid-19Cases
(per million)
|
|
Mar-20
|
|
Apr-20
|
|
May-20
|
|
Jun-20
|
|
Jul-20
|
|
Aug-20
|
|
Sep-20
|
|
Oct-20
|
|
Nov-20
|
|
Dec-20
|
|
Jan-21
|
|
Feb-21
|
|
Mar-21
|
|
Apr-21
|
|
May-21
|
|
Jun-21
|
|
Jul-21
|
|
Aug-21
|
|
Sep-21
|
|
Oct-21
|
|
Nov-21
|
|
Dec-21
|
|
|
0.001938
|
|
0.015525
|
|
0.069496
|
|
0.209337
|
|
0.278305
|
|
0.295636
|
|
0.312263
|
|
0.332993
|
|
0.398026
|
|
0.479775
|
|
0.544813
|
|
0.579973
|
|
0.667957
|
|
0.820823
|
|
0.918936
|
|
0.957371
|
|
1.029811
|
|
1.160119
|
|
1.245127
|
|
1.272345
|
|
1.28484
|
|
1.292728
|
|
Solution:
The ACF and PACF of Covid 19 spread from March, 2020 to
December 2021.
|
Autocorrelations
|
|
Series: VAR00001
|
|
Lag
|
Autocorrelation
|
Std. Errora
|
Box-Ljung Statistic
|
|
Value
|
df
|
Sig.b
|
|
1
|
.871
|
.203
|
18.329
|
1
|
.000
|
|
2
|
.721
|
.198
|
31.541
|
2
|
.000
|
|
3
|
.566
|
.193
|
40.139
|
3
|
.000
|
|
4
|
.432
|
.188
|
45.442
|
4
|
.000
|
|
5
|
.313
|
.182
|
48.402
|
5
|
.000
|
|
6
|
.191
|
.176
|
49.580
|
6
|
.000
|
|
7
|
.064
|
.170
|
49.720
|
7
|
.000
|
|
8
|
-.055
|
.164
|
49.833
|
8
|
.000
|
|
9
|
-.147
|
.158
|
50.704
|
9
|
.000
|
|
10
|
-.222
|
.151
|
52.870
|
10
|
.000
|
|
11
|
-.292
|
.144
|
57.000
|
11
|
.000
|
|
12
|
-.354
|
.137
|
63.733
|
12
|
.000
|
|
13
|
-.392
|
.129
|
73.033
|
13
|
.000
|
|
14
|
-.400
|
.120
|
84.075
|
14
|
.000
|
|
15
|
-.395
|
.111
|
96.659
|
15
|
.000
|
|
16
|
-.387
|
.102
|
111.145
|
16
|
.000
|
|
Partial Autocorrelations
|
|
Series: VAR00001
|
|
Lag
|
Partial Autocorrelation
|
Std. Error
|
|
1
|
.871
|
.218
|
|
2
|
-.158
|
.218
|
|
3
|
-.100
|
.218
|
|
4
|
-.007
|
.218
|
|
5
|
-.042
|
.218
|
|
6
|
-.117
|
.218
|
|
7
|
-.122
|
.218
|
|
8
|
-.070
|
.218
|
|
9
|
-.012
|
.218
|
|
10
|
-.065
|
.218
|
|
11
|
-.107
|
.218
|
|
12
|
-.072
|
.218
|
|
13
|
-.010
|
.218
|
|
14
|
.008
|
.218
|
|
15
|
-.065
|
.218
|
|
16
|
-.071
|
.218
|