Two Samples t Test
Lecture 43
Introduction
The students' two samples t test is a statistical method used to determine that the two population means are identical or significantly different from each other. it is widely used when the sample sizes are small and the standard deviations are unknown but identical.
When to use the Students’
Two Samples t-Test
The students’ two
samples t-test is used when:
i. The sample
sizes are small.
ii. Both samples
are random and independent.
iii. The standard
deviation is unknown but assumed to be identical.
iv. The samples selected from normal are approximately normal.
Confidence Interval between
|
Off types |
Aberrant |
|
6.21 |
4.28 |
|
5.70 |
5.71 |
|
6.04 |
6.48 |
|
6.55 |
5.42 |
|
6.02 |
4.37 |
|
4.45 |
6.20 |
|
6.75 |
5.06 |
|
5.88 |
6.40 |
|
6.82 |
7.00 |
|
6.09 |
4.91 |
|
5.59 |
5.51 |
|
6.06 |
5.36 |
|
7.45 |
|
|
6.74 |
|
|
7.60 |
|
Construct a 98% confidence
interval between the population means of the rubber percentages. Assume that the rubber percentages are approximately normal with identical variances.
Solution: Let X1 & X2 represent off types and aberrant, respectively.
1-α = 0.98
|
X1^2 |
X2 |
X2^2 |
|
|
6.21 |
38.5641 |
4.28 |
18.3184 |
|
5.70 |
32.49 |
5.71 |
32.6041 |
|
6.04 |
36.4816 |
6.48 |
41.9904 |
|
6.55 |
42.9025 |
5.42 |
29.3764 |
|
6.02 |
36.2404 |
4.37 |
19.9809 |
|
4.45 |
19.8025 |
6.20 |
38.44 |
|
6.75 |
45.5625 |
5.06 |
25.6036 |
|
5.88 |
34.5744 |
6.40 |
40.96 |
|
6.82 |
46.5124 |
7.00 |
49.00 |
|
6.09 |
37.0881 |
4.91 |
20.1601 |
|
5.59 |
31.2481 |
5.51 |
30.3601 |
|
6.06 |
36.7236 |
5.36 |
28.7296 |
|
7.45 |
55.5025 |
|
|
|
6.74 |
45.4276 |
|
|
|
7.60 |
57.76 |
|
|
|
93.98 |
596.8803 |
66.70 |
375.5236 |
The sample mean of the rubber percentage of off-type plants:
The sample mean of the rubber percentage of aberrant plants:
The sample variance of the rubber percentage of off-type plants:
The difference between population means of off-types and aberrants is from 4% to 13.6 %.
Hypothesis Testing between
|
Method A |
Method B |
|
51 |
38 |
|
42 |
49 |
|
49 |
45 |
|
55 |
29 |
|
46 |
31 |
|
63 |
35 |
|
56 |
|
|
58 |
|
|
47 |
|
|
39 |
|
|
47 |
|
|
X1 |
X1^2 |
X2 |
X2^2 |
|
51 |
2601 |
38 |
1444 |
|
42 |
1764 |
49 |
2401 |
|
49 |
2401 |
45 |
2025 |
|
55 |
3025 |
29 |
841 |
|
46 |
2116 |
31 |
961 |
|
63 |
3969 |
35 |
1225 |
|
56 |
3136 |
||
|
58 |
3364 |
||
|
47 |
2209 |
||
|
39 |
1521 |
||
|
47 |
2209 |
||
|
553 |
28315 |
227 |
8897 |
|
Sample |
Size |
Sample Mean |
Sample Standard Deviation |
|
1 |
15 |
12.74 |
0.412 |
|
2 |
12 |
8.75 |
1.331 |
|
Varity 1 |
Variety 2 |
|
28 |
45 |
|
23 |
25 |
|
35 |
31 |
|
41 |
38 |
|
44 |
32 |
|
29 |
33 |
|
37 |
25 |
|
31 |
30 |
|
38 |
33 |
Assume independence
and test the hypothesis that the yield capabilities of variety 1 are less than
variety 2 at the 5% significance level.
Solution:
- Read More: t Test for Dependent Samples
%20(1)%20(1).png)
%20(1).png)
%20(1).png)
%20(1).png)
%20(1).png)
%20(1).png)
%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)

.png)
.png)
%20(1)%20(1).png)

%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
.png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)

%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
%20(1)%20(1).png)
No comments:
Post a Comment