Solved Examples on 2^k Factorial Experiment lecture - 28


 Examples on 2^k Factorial Experiment 

lecture - 28 

Example: A 4 X 4 Latin square was laid out to investigate the effect of 4 treatment combinations (nitrogen at levels n0 and n1 and phosphates at levels P0 and P1) on the yield of potatoes. The field plans together with plot yield are as follows:

Perform complete analysis of the data and give your interpretation of the results.

Solution: We setup our hypotheses as:


H0 : τ1 = τ2 = τ3 = τ4 Vs. H1 : τ1  τ2  τ3  τα

H01: The effect of nitrogen on yield is insignificant 
                                    Vs. 
H11: The effect of nitrogen on yield is significant

H02: The effect of phosphorus on yield is insignificant 
                                 Vs. 
H12: The effect of phosphorus on yield is significant

H03: The effect of nitrogen & phosphorus combination on yield is insignificant.
                                Vs.
H13: The effect of nitrogen & phosphorus combination on yield is significant.


For treatment:

Partition of treatment sum of squares by using Yates Algorithm

Treatment Combination

Yield

Column – I

Column - II

Effects

(1)

50

132

318

 

n

82

186

74

342.25

P

72

32

54

182.25

np

114

42

10

6.25

 

 

 

 

 

ANOVA Table:


Remarks: H0 is rejected and the effect of 4 treatment combination on potatoes yield is significant.

H01 and H02 is also significant and the individual effects of nitrogen and phosphorus are significant. 

Example: 

An experiment is performed in order to investigate the effect of concentration of a reactant and the presence of the catalyst of the reaction time of a chemical process. Let the two levels of the reactant concentration be 15 % & 25 %. The catalyst has two levels high level denoting the presence of the catalyst and low level denoting the absence with three replicates. The data of the experiment are shown in the table below: 

Treatment Combination

Replicate

I

II

III

A low, B low

28

25

27

A high, B low

36

32

32

A low, B high

18

19

23

A high, B high

31

30

29

Test the effects of reactant concentration and catalyst and their interaction.

Solution: 

i. We setup our hypotheses as:

H0 : τ1 =τ2 = τ3 = τ4 Vs. H1 : τ1 τ2  τ3  τ4 

H01 : Aj = 0 Vs. H11 : Aj  0

H02 : Bk = 0 Vs. H12 : Bk  0

H03 : (AB)jk = 0 Vs. H13 : (AB)jk  0

ii. The significance level; α = 0.05

iii. The test statistic:

vi.  Critical Regions:
Reject H0, When F .= > F0.05(3, 8) = 4. 07
Reject H01, H02, H03, when F .= > F0.05(3, 8) = 5. 12

v. Computation:

Treatment Combination

Total

Column I

Column II

Effects

(1)

80

180

330

 

a

100

150

50

208.33

b

60

20

-          30

75

ab

90

30

10

8.33


ANOVA Table:
vi. Remarks
       The F3 calculated value falls in the acceptance area . It is concluded that the interaction effect is insignificant.

Example: 

i.               The following output was obtained from a computer program that performed a two-factor ANOVA on a factorial experiment.

SV

d.f

S. S

M . S

F

A

1

0.322

?

?

B

?

80.554

40.2771

4.59

AB

?

?

?

?

Error

12

105.327

8.7773

 

Total

17

231.551

 

 

a.    Fill in the blanks in the ANOVA table

b. How many levels were used for factor B?

c.  How many replicates of the experiment were performed?

d.  What conclusions would you draw about this experiment?

Solution:

Solution:

a.   MS for factor A = 0.322 / 1 = 0.322

d.f for factor B = 1

d.f for factor AB = 1

SSAB = SSTotal  -  (SSE + SSA+ SSB)

SSAB = 231.551 – (105.327 + 0.322 + 80.554)

SSAB = 45.348

MSAB = SSAB / df

MSAB = 45.348 / 1

MSAB = 45.348

SV

d.f

S. S

M . S

F

A

1

0.322

0.322

0.0366

B

1

80.554

40.2771

4.59

AB

1

45.348

45.348

5.166

Error

12

105.327

8.7773

 

Total

17

231.551

 

 


b. The experiment is 2^2 factorial experiment, so two levels are used for factor B.

c. d.f for Treatment = 3
    d.f for Error = 12
    d.f for Total = 17
    d.f for Replicate or Row = 17 - 12 - 3
    d.f for Replicate or Row = 2
so, the number of Replicates = 3
d. 

SV

d.f

S. S

M . S

F

F tab

A

1

0.322

0.322

0.0366

3.18

B

1

80.554

40.2771

4.59

3.18

AB

1

45.348

45.348

5.166

3.18

Error

12

105.327

8.7773

 

 

Total

17

231.551

 

 

 


The interaction effect of AB and effect of factor B are significant.

Example: The ANOVA table of RCBD Factorial experiment is given below:

SV

df

SS

MS

F

P value

A

1

36.00

?

?

?

B

?

?

0.75

?

?

AB

1

12.00

?

?

?

Error

6

7.50

?

 

 

Total

11

56.25

 

 

 


Answer the following questions:

(a).  The form of the above factorial experiment…...

(b). The statistical model for the factorial experiment…...

(c). Find the missing values and complete the ANOVA table.

(d). Determine P values.

(e). interpret the results.

(f). How many blocks were used

Answers:

(a). 2^2 factorial experiment

(b). Statistical model:

Yijk = μ + Aj + Bk + (AB)jk + eijk

(c). Complete ANOVA

(d) using the table


SV

df

SS

MS

F

P value

A

1

36.00

36.00

28.8

0.010

B

1

0.75

0.75

0.6

0.100

AB

1

12.00

12.00

9.6

0.010

Error

6

7.50

1.25

 

 

Total

11

56.25

 

 

 


Example:

A full-factorial design is being used to help with development of a prospective 3-D printing process for a ceramic scaffold material, in an attempt to improve the compressive strength. Three factors, each with two levels, have been tested, producing the results shown in the tables below:

 

Factor

Levels

0

1

A: Powder size (nm)

50

100

B: Layer thickness (mm)

0.3

0.5

C: Scan speed (mm/min)

100

300


 Write down appropriate statistical model of the above experiment. Using ANOVA, determine the effect of powder size, Layer thickness, Scan speed, and the interaction between them.

Solution:The experiment consists 3 factors (i.e. A, B, C) and each factor have two levels, the following statistical model is used to represent the mentioned experiment.

Yijk= μ + Aj + Bk + Cl + (AB)jk + (AC)jl + (BC)kl + (ABC) jkl + eijkl

 

Treatment Combination of 3^2 Factorial Experiment

 

a0b0c0

a1b0c0

a0b1c0

a1b1c0

a0b0c1

a1b0c1

a0b1c1

a1b1c1

 

(1)

a

b

ab

c

ac

bc

abc

 

50

100

50

100

50

100

50

100

 

0.3

0.3

0.5

0.5

0.3

0.3

0.5

0.5

 

100

100

100

100

300

300

300

300

TC

150.3

200.3

150.5

200.5

350.3

400.3

350.5

400.5

Now using Yates Method

 

TC

Total

Column I

Column II

Column III

Effects

(1)

150.3

350.6

701.6

2203.2

 

a

200.3

351.0

1501.6

200

5000

b

150.5

750.6

100

0.8

0.08

ab

200.5

751.0

100

0

0

c

350.3

50

0.4

800

8000

ac

400.3

50

0.4

0

0

bc

350.5

50

0

0

0

abc

400.5

50

0

0

0

The interaction effects are insignificant and factor A, C are significant.

 



No comments:

Post a Comment

Moving Average Models (MA Models) Lecture 17

  Moving Average Models  (MA Models)  Lecture 17 The autoregressive model in which the current value 'yt' of the dependent variable ...