MCQ's on Regression Analysis

 

Regression Analysis

Multiple Choice Questions

1.      The process of constructing a mathematical model that can be used to predict one variable by other is called

i.                    Regression

ii.                  Correlation

iii.                Scatter plot

iv.                All the above

2.      The predicted rate of response of the dependent variable to changes in the independent variable is called:

i.                    Slope

ii.                  Intercept

iii.                Error

iv.                Regression equation

3.       In simple linear regression, the numbers of unknown parameters are:

i.                    0

ii.                  1

iii.                2

iv.                3

4.      In simple linear regression, the numbers of variables involve are

i.                    1

ii.                  2

iii.                3

iv.                4

5.      In the regression equation Y = 21 - 3X,  the slope is

i.                    21

ii.                  – 21

iii.                3

iv.                - 3

6.      In the regression equation Y = 2.50X+ 100,  the intercept is

i.                    2.50

ii.                  – 2.50

iii.                – 100

iv.                100

7.   For the Least Square trend Y^ = a + b X



8.      In the Least Square Regression Line, ∑(Y−Y^)2 is always

i.                    Zero

ii.                  1

iii.                Least

iv.                Most

9.      If the equation of the regression line is y=5, then what result will you take out from it?

i.          The line passes through origin

ii.          The line passes through (0, 5)

iii.         The line passes through (5, 0)

iv.           None of them

10.  In the model Y=mX+ a, Y is also known as the

i.                    Regressend

ii.                  Regressor

iii.                Explanatory

iv.                All the above

11.  If the regression equation is equal to Y=23.6–54.2X, then 23.6 is the ______ while −54.2 is the ____ of the regression line.

i.                    Slope & intercept

ii.                  Intercept & slope

iii.                Slope & coefficient

iv.                Residual & intercept

12.  In regression equation y= α + βX + e, both X and Y variables are

i.                    Random

ii.                  Fixed

iii.                X random & Y fixed

iv.                X fixed & Y random

13.  In Regression Analysis, the regression line (Y = α + βX) always intersect at the point

i.                    (0, 0)

ii.                  (X, Y)

iii.        (Mean of X, Mean of Y)

iv.        all the above

14.  The regression Line always passes through

i.                    Origin

ii.                  Median of data

iii.                Mean of data

iv.                None of them

15.  In Correlation both variables are always

i.                    Random

ii.                  Non Random

iii.                Same

iv.                None of these

16.  The correlation coefficient for the regression equation Y = 21 - 3X

i.                    Positive

ii.                  Negative

iii.                0

iv.                1

17.  If X and Y in the regression model are totally unrelated, then

i.          r will be zero

ii.          r will be one

iii.        r will be - 1

iv.        r will be 0.5

18.  Which of the following statement is correct?


19.  The value we would predict for the dependent variable when the independent variables are all equal to zero is called:

i.                    Slope

ii.                  Sum of residual

iii.                Intercept

iv.                Difficult to tell

20.  Which of the following statement is correct, if  Y^ = 200 - 0.25 X,

i.        Y is increase by 25 %

ii.      Y is increase by 2.5 %

iii.    Y is decrease by 25 %

iv.     Y is decrease by 2.5 %

21.  If the two lines of regression are perpendicular to each other, the correlation coefficient r is …..

i.         r = 0 

ii.       r = 1

iii.        r = - 1

iv.       Nothing can said

22.  Homogeneity of two population correlation coefficients can be tested by …

i.                    Z test

ii.                  T test

iii.                F test

iv.                 Chi square test

23.  The geometric mean of the two regression coefficient βYX and βXY is equal to ….

i.        r  

ii.        r ^2 

iii.       1

iv.       – 1

24.  If each of X variable is divided by 5 and Y by 10 then the correlation between coded values is ….

i.                    Same as original

ii.                  Different from original

iii.                Direction will be change

iv.                Magnitude will be change

25.  If βXY and βYX are two regression coefficients, they have

i.                    Same sign

ii.                  Opposite sign

iii.                Both i) & ii) are possible

iv.                Nothing can be said

26.  In regression analysis, the square root of Mean Squared Error (MSE) is called the ….

i.                    Correlation coefficient

ii.                  Standard error of the estimate

iii.                Coefficient of determination

iv.                None of these

28.  If  βyx >0, then βyx is….

i.                    Less than 0

ii.                  Greater than 0

iii.                Equal to 1

iv.                Equal to 0

29.  The strength (degree) of the correlation between a set of independent variables X and a dependent variable Y is measured by …

i.                    Coefficient of correlation

ii.                  Coefficient of determination

iii.                Standard error of the estimate

iv.                All the above

30.  Relationship between the correlation coefficient and coefficient of determination is that


31. If R^2 = 0.40 for the regression line α βϵ. The result mean that …

i.         The relation b/w X & Y is positive

ii.         r is also 0.40

iii.        40 %  variation is explain by X

iv.         40 % variation in Y is explain by X

32.   Which of the following Y is strongly dependent on X:

i.              R^2 = 0.45

ii.             R^2 = 0.65

iii.             R^2 = 0.85

iv.             R^2 = 1.45

33.  Which one is equal to explained variation divided by total variation?

i.                    SS due regression

ii.                  Coefficient of determination

iii.                Standard error of the estimate

iv.                Coefficient of correlation

34. If correlation coefficient of y x is 0.70, then correlation coefficient of xy is

i.                    0.7

ii.                  – 0.7

iii.                0.36

iv.                – 0.36

35. If r xy = 0.7, then r uv is

i.                    0.7

ii.                  – 0.7

iii.                0.36

iv.                – 0.36

36.   A perfect negative correlation is signified by

i.                    0

ii.                  1

iii.                -1

iv.                0.5

37.   If two variables were perfectly positively correlated, then which of statement is incorrect?

i.        r= 0

ii.      r< 0

iii.    r> 0

iv.     r = 1

38. If  Y^ = a, then  r xy?

i.                    0

ii.                  1

iii.                -1

iv.                0.5

39.  If X and Y are independent of each other, the Coefficient of Correlation is

i.                    0

ii.                  0.5

iii.                -1

iv.                1

40.  The Coefficient of Correlation r is independent of

i.                    Origin

ii.                  Scale

iii.                Scale & origin

iv.                None of these

41.  If r=0.6,byx=1.2 then bxy is

i.                    0.3

ii.                  0.2

iii.                0.72

iv.                0.40

42.  When the regression line passes through the origin then

i.         Intercept is zero

ii.         slope is zero

iii.       both i) & ii) are zero

iv.        r is zero

43.  The range of a partial correlation coefficient is:

i.           0 to 1

ii.         0 to infinity

iii.        -  1 to + 1

iv.        negative infinity to positive infinity 

44.  If the correlation coefficient between the variables X and Y is ρ, the correlation coefficient between X^2 and Y^2 is

i.               ρ

ii.             ρ^2  

iii.        1

iv.          0

45.  In a regression analysis if SSE = 200 and SSR = 300, then the coefficient of determination is

i.                    0.6000

ii.                  0.6667

iii.                0.4000

iv.                0.1500

 

 

 


No comments:

Post a Comment

Moving Average Models (MA Models) Lecture 17

  Moving Average Models  (MA Models)  Lecture 17 The autoregressive model in which the current value 'yt' of the dependent variable ...