Mathematical Expectation of the Complete Randomized Design
Model
In lecture, we learnt that
The partition of total variation into its two
components parts is given by:
SSTotal = SST + SSE
Sampling
Distribution
Consider the model:
The error term “
|
Varieties |
||||
|
A |
B |
C |
D |
E |
|
4 |
7 |
5 |
11 |
4 |
|
6 |
13 |
4 |
10 |
8 |
|
4 |
10 |
4 |
9 |
6 |
|
10 |
12 |
9 |
14 |
10 |
If, you are given that 1 = 7, 2 = 11, 3 = 6, 4 = 12,
and 5 = 7, specifically identify the estimate of the following errors, ε11,
ε23, ε44, and ε52.
Solution:
|
Varieties |
||||||
|
|
A |
B |
C |
D |
E |
|
|
|
4 |
7 |
5 |
11 |
4 |
|
|
|
6 |
13 |
4 |
10 |
8 |
|
|
|
4 |
10 |
4 |
9 |
6 |
|
|
|
10 |
12 |
9 |
14 |
10 |
|
| T.j |
24 |
42 |
22 |
44 |
28 |
160 |
| Sqr T.j |
|
|
|
|
|
5544 |
ANOVA Table:
|
SV |
df |
SS |
MS |
F |
F(4,
13) |
|
b/w
Treatments |
4 |
106 |
26.50 |
4.14 |
3.06 |
|
Error |
15 |
96 |
6.40 |
||
|
Total |
19 |
202 |
|
- Read More: CRD Subsampling
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
No comments:
Post a Comment