Regression
Model
in
Deviated
Form
Manually computing multiple linear regression is time
consuming and tedious. This can be improved by estimating the unknown
parameters using a deviating equation rather than the original equation.
The deviated form is achieved by deviating the sample mean
of response variable and predictors.
Consider the multiple linear regression Model with
two regressors is given by:
The OLS method is used to estimate the parameters of the
deviated multiple linear regression model.
Consider the deviated regression model
given data
|
Y |
X1 |
X2 |
|
30 |
4 |
10 |
|
20 |
3 |
8 |
|
36 |
6 |
11 |
|
24 |
4 |
9 |
|
40 |
8 |
12 |
|
Y |
X1 |
X2 |
X1
Y |
X2
Y |
X1
X2 |
Sqr
X1 |
Sqr
X2 |
|
30 |
4 |
10 |
120 |
300 |
40 |
16 |
100 |
|
20 |
3 |
8 |
60 |
160 |
24 |
9 |
64 |
|
36 |
6 |
11 |
216 |
396 |
66 |
36 |
121 |
|
24 |
4 |
9 |
96 |
216 |
36 |
16 |
81 |
|
40 |
8 |
12 |
320 |
480 |
96 |
64 |
144 |
|
150 |
25 |
50 |
812 |
1552 |
262 |
141 |
510 |
The Estimated Regression model in deviated form:
Standard deviation of regression model:
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
No comments:
Post a Comment