Gauss Markov Theorem
&
The Gauss Markov theorem says
that, under certain conditions, the ordinary least squares (OLS) estimator of
the coefficients of a linear regression model is the best linear unbiased estimator
(BLUE)
Consider the simple linear Regression
Model
i. Linearity
The OLS
estimates are unbiased estimators of regression parameters.
Now variance of intercept is defined as:
iii. The variance of the OLS estimates has
minimum variance.
The OLS estimate has
minimum variance.
Hence, the variance of the OLS estimate is minimum.
Consider the model
We know that
Substitute from eq. 2
& eq. 3 in eq. 1 given below:
- Read More: Sampling distribution of OLS estimators
:
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
.png)
No comments:
Post a Comment